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Abstract 
The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using 

piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures 
in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating 
beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control 
law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive 
electronic circuit components and adaptive feature could be easily programmable into control algorithm. 
Experimental active damping was demonstrated on two test specimens achieving significant damping on 
tip displacement and patch location. Also a multimode control technique was shown to control several 
modes. 
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I. Introduction
II. Passive shunt damping
III. Active feedback controller design and analysis
IV. Experimental results
V. Summary

Objective
To investigate possibility of using an active resonance 
controller for turbomachinery blade with piezoelectric patches.

Outline

Previous activities at GRC

I.    Introduction

• Developed new damping technologies to reduce excessive vibratory stresses 
that lead to high cycle fatigue (HCF) failures in aircraft engine 
turbomachinery.

• Investigated several damping methods such as viscoelastic damping
(O. Mehmed with J. Kosmatka, UC San Diego), passive impact damper, 
plasma sprayed damping coating, and HTSMA (K. Duffy).

• Shape memory alloy (SMA): blade stiffness change or shape change by 
electrical heating. Slow response to rotating/moving parts. SMA damping 
is also considered.

• Piezoelectric (PE) devices: change in peak amplitude at blade resonance 
by oscillating electric signal. Selected due to fast response to
voltage/current signal from controller. 

Current effort at GRC
To develop a damping technology for fan blade incorporating smart structure vs. 
material such as piezoelectric (PE) materials or shape memory alloy (SMA).
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Two conventional control approaches for PE blade damping 

Passive damping (or shunt damping): PE transducer is shunted by a 
passive electric circuit that acts as a medium for dissipating 
mechanical energy of the base structure – (Hagood and V. Flotow, 
1990). 
Typical active control: PE transducers are being used as actuators and 
sensors for vibration control of flexible structures. These materials 
strain when exposed to a voltage and conversely produce a voltage 
when strained. Thus, one can minimize unwanted vibrations to the
base structure by applying a 180° out-of-phase voltage to the PE 
actuator (numerous references available).

I.    Introduction (continued)

Shunted piezoelectric circuit for turbomachinery blades

• Passive control of turbomachine blading flow-induced vibrations (C. Cross, 2002).

Flat plate airfoil with PE elements

Literature survey for recent advances 

Passage perforated plates on the rotor was 
used to generate wake Then the PE 
stators were excited in a chordwise 
bending mode.
A synthetic inductor was produced (Chen, 
1986) to replace L = 342 H to control the 
first bending mode at 64.6 Hz.

1.

• Passive shunt circuit was tested for piezoblade damping  (S. Livet, 2007).

Passive control diagram

A virtual inductor (or gyrator) that 
consists of op amps, external power 
supply, resistors and capacitors was 
used to replace L = 7.9 H for a 
compressor disk blade.
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Typical example of experimental setup

• Numerous papers published for passive control for rotorcraft vibration.

Literature survey (continued)

Demonstrated a variety of passive 
techniques using PE transducer at the test 
lab. To authors’ best knowledge, none of 
them showed the actual demonstration on 
the rotating blades.

To control the passage shock 
movement, trailing edge of 
airfoil was oscillated by P.E.

• Cascade flutter control using PE device in subsonic flow.
(T. Watanabe, 2005, under NASA Quiet Engine Program) 

Active control of PE actuator for turbomachinery blades

Passage shock waive was generated at the 
trail edge of airfoil Induced unsteady 
aerodynamic work, causing instability.
Principle: If the passage shock movement 
is controlled, blade vibration stability can 
be changed.

2.

• Low-speed fan noise control using PE actuators mounted on stator vanes:
(P. Remington, 2003)

Actuators installed in the Stator Vanes.

Active control of PE actuator for turbomachinery blades (continued)

Experimental active control protocol

• Active control was tested for piezoblade damping  (S. Livet, 2007).

Literature survey (continued)

210 vane actuators in the stator vanes of 
the Active Noise Control Fan (ANCF) 
test rig were tested to control fan-stator 
interaction noise. Good noise reductions 
achieved.

Used a typical active control law (PD 
control) and achieved ζ = 0.9%.
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Summary of literature survey

I.    Introduction (continued)

Our unique approach

Room temperature PE patches were used for the stationary blades, not for 
the rotating blades yet.
No pure passive circuit was used because of huge inductor size. Instead 
semi-passive circuits were used to simulate physical inductors.
Conventional active control laws were used, which cannot make feedback 
effective only at resonant frequencies.
Wider and thicker patches were used, possibly resulting in aerodynamic 
performance penalty.

Extend to 1) rotating blades and 2) high temperatures. Need adaptive 
capability to change in eigen frequencies and material properties.
Implement pure passive and semi-passive circuits with Li ≈ 1H on the 
rotating fan blade.

In this presentation, we will demonstrate an active feedback architecture 
to control resonant frequency only. Passive circuits and adaptive 
feature can be easily programmable into control code.

0.086 H(5th ) 2989 Hz

0.3 H(4th )   619 Hz

1.2 H(3rd )   801 Hz

4.76 H(2nd )   402 Hz

126.6 H(1st )      78 Hz

Li
Bending 
resonance

Serial shunt circuit inductor 
size for resonant damping. 

II.    Passive Shunt Damping

g31 = -15e-3, voltage constant

ccap = 32.9e-9, nF

k31 = 0.30, electro-mechanical 
coupling factor

wp = 0.75 in, widthwb = 0.75 in, width

d31 = -60e-12, electric charge 
constant of PE

ρ = 0.16 lb/in3, linear mass 
density

Lp = 2 in, lengthL = 8 in, length

ta = 3/32 in, thicknesstb = 3/32 in, thickness

Ep = 1.03e7 psiE = 15.2*1e6; 15.2 Mpsi, 

PETi 6A1-4V  beam

Material properties and dimension of test specimen.

f(d,t)L R
Cp

Resistive/Inductive shunt 

CLi
i

1
=ω

The electrical resonance 
frequency for ith mode is

Target
mode
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II.    Passive shunt damping (continued)

Passive controller implementation issues

Required huge inductor size mass to get a well tuned damping circuit.
Semi-passive circuit also required constant power supply.
Rotor imbalance, electronic parts at high centrifugal loads/g-loads, space 
problem for multi-patches situation.
Seems to be not practical in reality for the rotating blade.

Dynamic Spin Rig

≈ 1 H for ω3

+

ith mode circuit  for multi-patches

x # of blades

+ Power supply

Semi-passive circuit

+

Digital control approach

III.    Feedback Controller Design and Analysis

Passive circuits can be easily programmable showing the shunted PE 
transducers can be viewed as a feedback control problem.
Like a shunt circuit, the feedback is effective only at resonant frequencies.
Also the active controller uses only one actuator to damp several of the 
blade’s resonant modes (bending modes only at this study).

Operational overhead of transducing high voltage power to blade across slip 
ring.
Potential cross talk between high voltage control signals to on blade sensors.
Might encounter other unexpected problems.

Digital controller implementation issues

Investigated similarities between the shunt damping systems and collocated 
active vibration controllers (S. Moheimani, 2003).
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III. Feedback Controller Design/Analysis (continued)

General feedback control RLC network.

Zo output
Zi input
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The controller is expressed in terms of passive circuit components.

Transfer function of RLC circuit
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III. Feedback Controller Design/Analysis (continued)
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Analytical frequency response of Gvv Analytical frequency response of Gvy

Controller has to push peaks down to meet the design specification required 
for blade damping at resonances.
Similarly, the transfer functions Gfv and Gfy can be obtained to complete a 
theoretical model of the laminated beam. 

III. Feedback Controller Design/Analysis (continued)

Analytical open- and closed-loop frequency 
responses for multi-resonant damping.

Open-loop

Impulse responses for open- and closed-loop  system.

Closed-loop

This method can damp multiple resonance modes using one sensor-actuator pair.
However, the control effort is very high because the PE patch was located very 
close to the root side (worst location) and the 1st bending mode included.
Optimization process might be needed for an optimal control effort given 
performance requirement at each mode and existing control hardware capacity.

III. Feedback Controller Design/Analysis (continued)
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IV.   Experimental Results

Vs(s)

Σ
Vi(s) +

ΣAi(s)

-

Voltage amplifier

Sensor

LP Filter

Actuator

dSPACE control system

Shaker

Active feedback controller implementation using dSPACE system

• A very small and thin patch (0.685˝x0.5˝x0.015˝) was bonded at the optimal place 
for the third bending mode (target mode) to demonstrate an active controller 
performance to see how peak amplitude can be reduced at the resonance.

• After fine-tuning the controller to the experimental target resonance, download the 
control algorithm to the dSPACE control system.

Experimental test setup

A pair of identical PE patches (sensor and actuator) are bonded at the optimal 
location for the target resonance – 3rd bending mode at this demo.  
To measure an experimental transfer function of the beam from the shaker 
(excitation source) to the tip displacement, two accelerometers are attached 
accordingly.
HP Analyzer generates swept sine signal to send to the shaker and reads all 
signals from accelerometers, PE sensor and actuator, and controller voltage 
from the dSPACE control system.
Analyze closed-loop and open-loop transfer functions to investigate achieved 
damping ratios for the target mode.

PE Actuator

PE Sensor

Accelerometer

Accelerometer

Shaker

IV.    Experimental Results (continued)

Beam: 8˝×.75˝×.095˝,  PE wafer: .5˝×.25˝×.01˝

1.
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Bode plot of transfer functions around the target mode

Bode Plot of Transfer Function (x_tip/F_base)
around the 3rd Bending Mode at 790 Hz (tip weighed)

0

5
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720 740 760 780 800 820

Frequency, Hz

M
ag

.

Uncont TF_bt

Cont TF_bt

16.794.9Q

0.030.00527ζ

Controlled 
peak at tip

Uncontrolled 
peak at tip

Controlled peak at tip

Uncontrolled peak at tip

Achieved about 83% damping performance at tip displacement, changing 
damping ratio from 0.00527 to 0.03. Also strain level at the PE location 
was reduced by about 81%.
The damped natural frequency is lowered by about 2.5%.
Passive LR circuit achieved about 5%, changing damping ratio from 
0.00113 to 0.00119.

Linear scale of transfer functions Tf |xtip/fbase| around the 3rd bending mode at 790 Hz.

17.2494.2Q

0.0290.00531ζ

Cont. peak 
at PE

Uncont. peak 
at PE

IV.    Experimental Results (continued)

IV.    Experimental Results (continued)

Please click the screen for the demo video.

This movie shows the time history of controlled and uncontrolled tip displacement and strain 
level at the PZT location when the excitation force of 5mV*sin(790 Hz*t) was injected.

Excitation force

Tip displacement

Strain level
at PE location  
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2nd demo using a larger patch

IV.    Experimental Results (continued)

Shaker

PE Actuator
In this demo, a larger patch was used to 
increase dynamic ratio of signals.

Unlike the previous demo, a set of 
control laws with parallel connection to 
combine control efforts for several modes 
were used in order to investigate active 
controller performance at all bending 
modes up to 3k Hz.

Exp transfer functions Tf |xtip/fbase| from 20 Hz through 3k Hz.

Reduced the tip displacement of the 3rd 
bending mode (target) at 824.4 Hz by more 
than 98%. Also reduced neighboring peaks 
(2nd bending and 4th bending modes) by 
more than 83%.

Notice that 5th and 6th modes were 
affected significantly. However, the first 
mode was not affected at all because it’s not 
located for controlling 1st bending mode.

Bode Plot of Transfer Function (tip/base)

0.1

1.0

10.0

100.0

10 100 1000 10000

Hz

M
ag

.

Uncot TF_bt

Cont TF_bt

Beam: 8˝×.75˝×.095˝,  PE wafer: 1.8˝×.8˝×.01˝

2.

Bode plot of transfer function at the 3rd bending mode
IV.    Experimental Results (continued)

Bode Plot of Transfer Function (x_tip/F_base)
around the 3rd Bending Mode at 828.4 Hz

0

5

10

15

20

600 700 800 900 1000

Frequency, Hz

M
ag

.

Uncot TF_bt

Cont TF_bt

Controlled Peak

Uncontrolled Peak

3.54134Q

0.1410.00371ζ

Controlled 
Peak

Uncontrolled 
Peak

Achieved about 98% damping performance at tip displacement, changing 
damping ratio from 0.00371 to 0.141. Also strain level at the PE location was 
reduced by about 90%.
The damped natural frequency is lowered by about 12%.

Linear scale of transfer functions Tf |xtip/fbase| at 828.4 Hz.
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Time history when base excitation force of 10mV*sin(828.4 Hz*t) injected

IV.    Experimental Results (continued)

Showed time history of controlled and uncontrolled tip displacement and strain 
level at the PE location when excitation force with 828.4 Hz was applied.
As anticipated, about 98% reduction at the tip displacement and 90% reduction 
in strain level on the PE location was achieved.

Tip Displacement when Base Excitation force of 
10mV*sin(828.4 Hz *t) injected

-0.9
-0.7
-0.5
-0.3
-0.1
0.1
0.3
0.5
0.7
0.9

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Time, sec

A
m

p,
 V

Uncot ACC

Cont ACC

Strain Level of PZT when Base Excitation Force of 
10mV*sin(828.4 Hz * t) injected

-0.8
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0.4
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0.8
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p,
 V

Uncot PZT

Cont PZT

Tip displacement and strain level of PZT when the base excitation force of sinusoidal signal 
at the 3rd bending frequency was injected.

Actively Controlled Peaks

IV.    Experimental Results (continued)

Please click the screen for the demo video.

This movie shows the time history of controlled and uncontrolled tip displacement and strain 
level at the PZT location when the excitation force of 10mV*sin(828.4 Hz*t) was injected.

Excitation force

Tip displacement

Strain level
at PE location  
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IV.    Experimental Results (continued)

Bode plot of transfer function at the 2nd bending mode

Achieved about 84% damping performance at tip displacement, changing 
damping ratio from 0.00578 to 0.03461. Also strain level at the PE location 
was reduced by about 62%.
The damped natural frequency is lowered by about 8.5%.

Bode Plot of Transfer Function (x_tip/F_base) around 
the 2nd Bending Mode at 284 Hz
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Linear scale of transfer functions Tf |xtip/fbase| at 284 Hz.

IV.    Experimental Results (continued)

Strain Level of PZT when Base Excitation Force of 
5mV*sin(281.95 Hz * t) injected
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5mV*sin(281.95 Hz *t) injected
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Showed time history of controlled and uncontrolled tip displacement and strain 
level at the PE location when excitation force with 281.95 Hz was applied.
As anticipated, about 84% reduction at the tip displacement and 62% reduction 
in strain level on the PE location was achieved.

Tip displacement and strain level of PZT when the base excitation force of sinusoidal 
signal at the 2nd bending frequency was injected.

Time history when base excitation force of 5mV*sin(281.95 Hz*t) injected
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IV.    Experimental Results (continued)

Bode plot of transfer function at the 4th bending mode

Achieved about 83% damping performance at tip displacement, changing 
damping ratio from 0.009 to 0.052. Also strain level at the PE location was 
reduced by about 78%.
The damped natural frequency is lowered by about 3.2%.

Bode Plot of Transfer Function (tip/base)
around the 4th Bending Mode at 1552.8 Hz
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Linear scale of transfer functions Tf |xtip/fbase| at 1552.8 Hz.

IV.    Experimental Results (continued)

Time history when base excitation force of 10mV*sin(1552 Hz*t) injected

Showed time history of controlled and uncontrolled tip displacement and strain 
level at the PE location when excitation force with 1552 Hz was applied.
As anticipated, about 83% reduction at the tip displacement and 78% reduction 
in strain level on the PE location was achieved.

Tip displacement and strain level of PZT when the base excitation force of sinusoidal signal 
at the 4th bending frequency was injected.

Tip Displacement when Base Excitation force of 
10mV*sin(1552 Hz *t) injected
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IV.    Experimental Results (continued)

Bode plot of transfer function at the 5th and 6th  bending modes

Achieved about 28% damping performance at tip displacement at the 5th mode 
and 64% damping performance at the 6th mode.

Bode Plot of Transfer Function (x_tip/F_base)
for the 5th and 6th modes from 2.4k to 2.7k Hz
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Linear scale of transfer functions Tf |xtip/fbase| at the 5th (2490 Hz) and 6th modes (2610 Hz).

Summary

Suppression effect of the present active control with piezoelectric device 
was demonstrated to reduce resonance peaks only at the bending modes.  
A single patched beam could reduce the target resonant peak (3rd bending
mode at this study) as well as neighboring modes - multi-mode control.
This demo showed that this approach would reduce a number of patches for 
multi-mode control for rotating plate blade.
Further comprehensive research including a trade-off study must be done to 
demonstrate a viable means of using this approach for rotating blades 
through GRC’s Dynamic Spin Rig test.
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